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In studying particle motion with spectral similations of turbulence, it is necessary to 
evaluate the local fluid velocity at the instantaneous particle position. In general, this point 
does not coincide with a mesh point. A direct summation of the spectral Fourier series is the 
most accurate method but is very time consuming. Various approximate methods are tested 
and comparisons made of both their accuracy and the computational effort required. 0 1989 

Academic Press, Inc. 

1. INTRODUCTION 

Spectral simulation methods for the computation of turbulent flows are the most 
efficient and accurate for problems where they may be applied [S]. They make the 
best use of available spatial resolution and, where possible, are the method of 
choice in investigating turbulent flows. For homogeneous turbulence the flow field 
u(x, t) is specified by a Fourier series representation 

u(x, t) = 1 il(k, t) exp(ik . x) 
k 

(1.1) 

where the wavenumber components are integer multiples of the form 

ni = 0, 1, 2, . . . . N/2, i = 1, 2, 3, (1.2) 

and periodic boundary conditions are applied on a box of side L. The spectral 
coefficients B(k, t) then evolve in time according to the Navier-Stokes equation for 
incompressible flow. 

The study of turbulent diffusion and other related problems requires the com- 
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putation of Lagrangian particle trajectories X(t), which move in response to the 
local fluid velocity 

$ X(t)=u(x=X(t), t). (1.3) 

Central to this is the ability to evaluate u(x = X(t), t) accurately and efficiently for 
a large number of particles. Equation (1.1) evaluates the fluid velocity at the 
particle position, u(x = X(t), t), most accurately, up to the accuracy available from 
the flow simulation. For a small number of particles the direct summation of (1.1) 
is feasible, but the computation time makes this prohibitive for a large number of 
particles, say 1000. 

In a pseudo-spectral simulation of turbulence, the fluid velocity u(x, t) is 
computed at the N3 grid points: 

(xi, yj, zl) = (5 i, $j, $ l), i, j, 1 = 1, 2, . . . . N (1.4) 

from the spectral coefficients by a fast Fourier transform (FFT). Generally the 
evaluation of these velocities at the grid points does not involve extra computa- 
tional effort, since this evaluation is carried out as part of the simulation of the 
turbulent flow. The fluid velocity at the particle position, which in general will not 
coincide with the grid points, must then be evaluated by some other means. One 
such approach is to use an interpolation scheme on the grid point velocity data. 
For example, Riley and Patterson [9], in their turbulent diffusion experiment, used 
a 3-dimensional linear interpolation method to evaluate the local fluid velocity. 
Until no?, direct summation (Haidvogel [2]) and linear interpolation have been 
the most widely used methods, because of their simplicity. Computationally linear 
interpolation is the faster scheme but at the expense of accuracy. More recently 
Yeung and Pope [ 11, 121 have shown that the accuracy of linear interpolation is 
rather poor and have suggested an alternative interpolation scheme, which is 
discussed later. 

The question of accuracy is more acute in studies of the relative diffusion of two 
particles or processes which depend on the relative motion of two particles, such as 
particle coagulation [l]. In these instances the relative velocities of two particles 
must be determined accurately. For two particles close together it is possible that 
the approximation for the individual particle velocities (1.3) may be sufficiently 
accurate in absolute terms, but that the estimate for the relative velocity may be 
significantly in error. The determination of relative velocities emphasises the role of 
high wavenumber contributions to the flow field (l.l), and while low-order 
approximation schemes may work reasonably well for the low wavenumber 
components, they are generally poor for higher wavenumbers. 

In this study we will consider alternative interpolation schemes such as partial 
Hermite interpolation, Lagrangian interpolation, and a shape function method. 
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These schemes lie somewhere between direct summation and linear interpolation 
both in accuracy and the computational time required. Specifically we are interested 
in interpolation schemes for which the time to evaluate (1.3) does not exceed the 
time taken to compute the dynamics of the turbulent flow field. The aim of this 
paper is to examine these interpolation schemes for both accuracy and the com- 
putational effort required, and to see how well these schemes perform in simulations 
of two-particle and one-particle turbulent dispersion. In doing so this paper goes 
beyond the work of Yeung and Pope [ 111. In Section 2 the interpolation schemes 
considered and their numerical implementations are described. In Section 3 the 
accuracy of these schemes for individual Fourier modes at different wavenumbers 
is examined and these results are combined to estimate accuracy for a typical 
spectrum of Fourier modes. Then in Section 4 specific numerical tests are made for 
one-particle and two-particle dispersion in various flow fields generated by a direct 
simulation of homogeneous turbulence. Finally some guidelines as to the suitability 
of the various schemes are given for different types of problems. All the computa- 
tions reported here were performed on a Cyber 205 computer at the John von 
Neumann Center in Princeton. 

2. VELOCITY EVALUATION METHODS 

In this study live principal methods of velocity evaluation are considered. These 
are direct summation (DS), Lagrangian interpolation (LGI), partial Hermite inter- 
polation (PHI), linear interpolation (LNI), and shape function method (SFM). In 
each of these methods the 3-dimensional fluid velocity u(x, y, z, t) is approximated 
by a series of the form 

~(4 Y, z, t) = C 1 C 44 my I; f)fn(x) g,(y) h,(z), (2.1) 
nml 

evaluated at the coordinate position (x, y, z). The series (2.1) is written in a 
standard format where f*(x), g,(y), and h,(z) are the basis functions and 
a(n, m, I, t) are the appropriate coefficients. The choice of the basis functions and 
the corresponding coefficients depends on the velocity evaluation method. The 
standard format (2.1) permits an easier theoretical comparison of these methods. 
The actual numerical implementation specific to each method will differ from this 
and is chosen for computational efficiency. Each of the methods is elaborated in the 
rest of this section. 

2.1. Direct Summation 

In this method the local fluid velocity is evaluated by directly summing the 
spectral coefficients over all wavenumbers as shown below 

v(x, y, z, t) = c c c fi(kl, kz, k3, t) eik1xeik2yeik3z. 
h kz k3 

(2.2) 
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Here the basis functions are sine and cosine functions and the corresponding 
coefficients are the spectral coefficients. Equation (2.2) is simply a restatement of 
Eq. (1.1) and there is no error involved in the velocity evaluation, so that for direct 
summation, 

vk y, z, t) = uh Y, z, t). (2.3) 

To evaluate the sum (2.2) for the three components of velocity and for A4 fluid 
particles, the number of floating point operations required is of the order 3MN3. In 
addition some 3MN operations are required to evaluate the sine and cosine func- 
tions. In a vector computer the problem can be vectorized either over the number 
of particles, giving vectors of length M, or over a wave number, giving vectors of 
length N. Let us denote the former as method DSA and the latter as method DSB. 
When the number of fluid particles is greater than N, method DSA will be 
computationally faster than method DSB. 

2.2. Lagrangian Interpolation 

In this methods, denoted as LGI, a sixth-order, 3-dimensional (3D) Lagrangian 
interpolation scheme is used and the velocity approximated by 

v(x3 Y? z2 t)= f f f u(xi3 Vj, z/, t, Li(x) Lj(.Y) L,(z), (2.4) 
j=o j=o I=0 

where xi, y,, zI are the grid points specified by (1.4). The basis functions Li, Lj, L, 
are given in the Appendix and are the standard functions for a six-point Lagrangian 
scheme. In a one-dimensional (1 D) context this interpolation scheme approximates 
the value of some function f(x) by the series 

“f(x) x$(x) = i fbi) Lib). 
i=O 

The scheme uses the function values at the three grid points lying either side of the 
particle position to tit a polynomial of degree five through these six nodal values. 
The interpolation scheme is exact at the nodes. Asymptotically as the spacing, h 
between the grid points goes to zero, the error of the approximation decreases as 
W6) 181. 

This scheme is extended to three dimensions by (2.4). Equation (2.4) represents 
a global Lagrangian interpolation scheme, whereas in the actual implementation of 
the scheme, a careful look at the basis function Li, Lj, L, reveals that only the 
velocity values at 6 x 6 x 6 grid points, arranged on a cubic lattice with the center 
cube containing the particle, are needed to fit the multidimensional polynomial. The 
periodic boundary conditions on the velocity field allow the velocity values at the 
grid points to be extended beyond the original box of side L. Again the interpola- 
tion scheme is exact at the nodes. Since for each particle 63 velocity values are 
needed, the evaluation of the sum for the local fluid velocity for M particles requires 
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of the order of 3 x63x A4 operations. Additionally 3 x62x M operations are 
required to evaluate the corresponding polynomials L;(x), Lj(y), and L,(z). In our 
program written for a Cyber 205, the 63 velocity values for all the particles are 
gathered to contiguous memory locations and then vectorization is performed over 
the number of particles. 

2.3. Partial Hermite Interpolation 

This scheme combines cubic Hermite interpolation in the two directions y and z 
with direct summation in the final direction x. In a l-dimensional context cubic 
Hermite interpolation approximates the value of some function f(x) by the series 

f(X) z 4(X) = 2 IIf Hi(X) +f’(xi) G;(x)], 
i=o 

where Hi and Gi are the corresponding basis functions given in the Appendix. For 
a point x in the interval (xi, x~+~) the scheme approximates f(x) by a cubic 
polynomial which is specified by the values of the function and its derivative f’(x) 
at the two endpoints. Over the whole range x0 to x, the approximation 4(x) is con- 
tinuously differentiable and is exact for both the function values and its derivatives 
at the grid points. Asymptotically as the spacing, h between grid points goes to zero 
the error of the approximation decreases as 0(h4). 

Hermite interpolation may be continued to higher dimensions. Here we apply it 
to two dimensions for the y, z-directions and combine this with direct summation 
in the x-direction. This scheme is denoted as PHI. The approximation scheme is 
specified as 

v(x, Y, z, t) = 1 $ : ezklxCa(k,, j, I, t) Hi(y) H,(z) 
kl j=O I=0 

+b(k,,j,I,t)Gj(y)H,(z)+c(k,,j,I,t)Hj(y)G,(z) 

+ W,, i 1, t) G,(Y) G,(z)l. (2.5) 

The coefficients a, b, c, d are specified in terms of the partial inverse transform of 
WI, 4, k, t), 

a@,, y, Z, t)=C C WI, k,, k,, t) exp(ik2y+ik,z)9 
kz k3 

(2.6) 

inverted with respect to k2 and k,. The coefficient a is then given by the values of 
ii at the grid points (JJ~, z/): 

a(k,, i 4 t) = Wk,, Yj, z/, t). (2.7) 
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The coefficients b and c are given by the first-order spatial derivatives of fi evaluated 
at the’grid points (yj, z,) 

W 1, j, 1, t) = ~WY, (2.8) 

c(k,, j, I, t) = aii/az. (2.9) 

Finally the coefficient d is given by the second-order spatial derivative of ii 
evaluated at the grid points (vi, 2,) 

d(k,, j, 1, t) = ahlay aZ. (2.10) 

The numerical implementation of this method requires three separate steps. 

Step 1. Obtain the coefficients a(k,, j, I, t), b(k,, j, 1, t), c(k,,j, 1, t), and 
d(k,, j, 1, t) from the spectral velocity coefficients G(k, t), using FFTs and following 
the stages shown in Fig. 1. Of the six operations involved in this step, the two 

*FFT in $ A 
U”(k~,Yj>Z~,t) 

*FFT in k, A 
u ’ (k,,k++t) 

A 

u(k,,Q,k,,t 

a ^ I 1 u’ (kl,k.g ,.t) 
Multiply by ik, az 

& FFT in ks 

& FFT in k, 

FFT in & a * 

az 
U"(kl,Yj J,,t) 

Multiply by i% 
& FFT in k, 

FIG. 1. First of the three steps involved in the implementation of partial Hermite interpolation. 
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operations, marked by asterisks, are in general part of a normal time-step for the 
turbulence computation and do not involve extra computational effort. 

Step 2. For each particle, identify the square, in the y -z plane, containing 
the particle coordinates (y, z) such that 

and gather together the corresponding coefficients a, b, c, d for the four corners at 
j= J, J+ 1 and l=L, L+ 1. With th ese coefficients perform the Hermite inter- 
polation, evaluating 

J+l Lfl 

1 [Ml1 j, 4 t) Hj(Y)Hf(z) 
j=J I=L 

+b(kl,j, 4 t)Gj(y)H,(z)+c(kl,j, 4 t)ffj(y) G,(z) 

+ W,, j, L t) G,(Y) G,(z)]. (2.11) 

The evaluation of (2.11) involves 48 scalar coefficients for each particle and for each 
wavenumber k,. To use the vector capabilities of the Cyber 205, these 48 coef- 
ficients for all the particles are gathered to contiguous memory locations to form 48 
arrays of length M. Interpolation is then carried out as a vector operation. This 
computation is repeated for all values of k, given by (1.2). 

Step 3. In this final step, the particle velocity is evaluated by a direct summa- 
tion over k1 

V(X, y, 2, t) = C W,, Y, z, t) exp(iklx). 

h 
(2.12) 

Step 1 represents a fixed overhead, independent of the number of particles, and 
involves 12N* additional l-dimensional FFTs, each of length A? Step 2 requires 
approximately 48MN operations and Step 3 approximately 3MN operations. In 
addition, allowance should be made for the operations to evaluate the polynomial 
terms in (2.11) and the sine and cosines in (2.12). A fully 3-dimensional Hermite 
interpolation scheme is possible but involves twice as many FFTs and is generally 
too costly. Further, the direct summation over k, of Step 3 involves only a summa- 
tion of a half complex series. Since the velocity field u is real valued and satisfies 
the condition 

il*(k, t) = 1( z k, t), 

for the complex conjugate 8* of the spectral coefficients, it suffices to save only the 
spectral coefftcients for k, 2 0. Hence a direct summation over k, requires half the 
computational effort of that needed for direct summation over k, or k3. 
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2.4. Linear Interpolation 

This method, denoted by LNI, is simply a 3-dimensional, second-order accurate, 
Lagrangian interpolation scheme and the approximation v for the velocity field is 
obtained by evaluating 

f. u(xi, Yj9 zI9 t, pi(x) pj(Y) pl(z)9 (2.13) 
i-0 j-0 j-0 

where the coefficients are the velocity values at the grid points. The basis functions 
Pi, Pj, P, are given in the Appendix. These are linear functions of position and 
P,(x) is zero for x lying outside the interval (xi-i, xi+ i). In this scheme, velocity 
data at the corners of the cube immediately surrounding the particle are used in 
evaluating the particle velocity. For M particles approximately 24M operations are 
required. 

2.5. Shape Function Method 

In the shape function method (SFM), the velocity data u(x, t) and its spatial 
derivatives au/ax, h/ay, and au/az at the eight corners of the cube immediately 
surrounding the particle are used in evaluating the local fluid velocity [13]. The 
particle velocity is computed as 

v(x3 Y, z, t)= f g 5 [ u(Xi, Yj, z/3 t, Hi(x) Hj(Y) H!(z) 
i-0 j-0 1-l) 

+ g (Xi, Yj, Z/3 t) Gi(x) Hi(Y) H,(Z) 

+E (Xi, Yj, Z/Y t) H;(X) G,(Y) H,(Z) 

+ g (xi, .Yj, ~1, t) Hi(x) H,(y) G,(Z) 1 3 (2.14) 

where H and G are the basis functions, also called shape functions, given previously 
in the Appendix. In one dimension, the SFM is the same as the cubic Hermite inter- 
polation discussed previously (PHI). But in three dimensions the SFM is less 
accurate. This is because the 3D Hermite interpolation also requires the evaluation 
of the second derivatives such as d2u/ax ay, a’n/ay az, and a2u/az 8.x and the third 
derivative d3u/ax ay az at the eight grid points. The PHI method is more accurate 
than the 3D Hermite interpolation, so it is certainly more accurate than SFM. The 
actual implementation of the shape function method, globally represented by 
Eq. (2.14), requires the values of the three components of velocity and their 
first-order spatial derivatives at the eight corners of the cube containing the particle, 
96 scalars in total. The evaluation of the spatial derivatives involves nine additional 
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3-dimensional FFTs each requiring N’ log N operations and the SFM method then 
requires approximately 96M operations for the evaluation of the sum (2.14) for A4 
particles. 

2.6. Other Methods 

Other methods of approximation are possible besides those mentioned above. 
One other scheme in particular that will be referred to is the method described by 
Yeung and Pope [ll], designated by them as TS13. This is a third-order accurate, 
13-point, interpolation scheme that uses not only the velocity values at the grid 
points specified by (1.4), but also the values on a staggered grid of N3 points offset 
by half a mesh spacing in each direction. Thus each node on the staggered grid lies 
at the center of a cubic element formed by the original grid. Interpolation for a 
particle lying in a specific cubic element uses the values at the eight corners of that 
cube, the value at the center of the cube, and four of the six nearest neighboring 
points lying at the center of the adjoining cubes. Full details are given in the 
reference. This scheme is suited to simulations of homogeneous turbulence that 
incorporate de-aliasing procedures (Patterson and Orszag [7]) and that make use 
of such a staggered grid. 

3. NUMERICAL TESTS FOR ACCURACY 

The accuracy of an interpolation scheme depends on the function that is being 
interpolated. In a spectral simulation of homogeneous turbulence, velocities are 
represented by a Fourier sum of sines and cosines. If the simulation is carried out 
in a box of side 27c, the wavenumbers of these Fourier modes are from (1.2) 

k,= 0, + 1, f2, . ..) &N/2, i= 1, 2, 3. 

The magnitude of a wavenumber vector with components ki is 

k= Ikl =(k;+k;+k;)“? 

In general, any interpolation scheme interpolates the low wavenumber modes more 
accurately than the higher wavenumbers. For a given flow field, two main 
ingredients determine the overall accuracy of a velocity interpolation scheme. First 
there is the energy spectrum E(k) of the velocity field. For isotropic turbulence this 
depends only on ]kl and is defined such that 

$<u:> =s,, E(k) dk, (3.1) 

where (u:) is the ensemble-averaged, mean square fluctuation of ui. Equation 
(3.1) may also be regarded as the turbulence kinetic energy per unit mass. Second, 
there is the accuracy with which the scheme interpolates various modes. While the 
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first factor gives the relative importance of a mode, the second determines how well 
that mode is interpolated. 

To compare the accuracy of different interpolation schemes some quantitative 
measure is required. Qualitatively the convergence properties of these schemes are 
known. For example, in terms of the interval h between grid points the truncation 
error for the LGI scheme decreases asymptotically as O(h6). However, in applica- 
tions it is important to know the coefficient of proportionality and at what value 
of h such asymptotic behavior may be obtained. For a fixed grid resolution, h, it 
is possible that a lower order scheme may give a smaller truncation error than that 
for some higher order scheme and that the asymptotic range of covergence may 
apply at a coarser grid resolution. 

3.1. Single Mode Accuracy 

The accuracy of an interpolation scheme for a mode of wavenumber k here is 
measured in terms of the root mean square error (RMSE) for the interpolation of 
sin(k .x) averaged over all points x in the box. In 1D this RMSE may be written 
as 

[sin(k,x) - o(x; kr)]* dx 1 “*, 

where u(x; k,) is the interpolation function approximating sin(k,x) over the 
interval 0 <x < 271. Similarly in 2D this RMSE can be expressed as 

Er= 1/(2n)* j:‘dx 11’ dy [sin(k,x+k,y)-v(x, y;k,,k2)]‘] , 
[ 

112 
(3.3) 

where u(x, y; k,, k,) is the approximation for sin(k, x + k2 y); and correspondingly 
in 3D, where V(X, y, z; k,, k,, k,) is the approximation for sin(k,x + k, y + k3z), 

1/(2n)3~~ndx~~ndy~~^dz[sin(k,x+k2y+k3z)-u(x,y,z;k,,k2,k,)]2 1 
112 

. 

(3.4) 

For selected wavenumber vectors k these expressions for the RMSE have been 
evaluated for the various approximation schemes described in Section 2, using the 
appropriate basis functions given in the Appendix. These results were obtained with 
the aid of the MACSYMA program for algebraic manipulations. 

The results for the RMSE of the various schemes are given in terms of the non- 
dimensional magnitude R of the wavenumber vector k. The scaling for k is defined 
by comparing the wavelength of the mode being interpolated to the spacing 
between the grid points h = L/N, thus 

i=& Ikl L/N. (3.5) 
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For 1 D the value of l varies between 0 and 1. In Fig. 2 the RMSE is plotted against 
l/l for lD, 2D, and 3D linear interpolation schemes. The RMSE shows little varia- 
tion with the number of dimensions when plotted in this way. For low values of R, 
the RMSE tends to zero as fi decreases and conforms to the usual asymptotic rule 
for the truncation error 

Er cc &‘. 

As the wavenumber k increases the RMSE reaches a maximum value of Er = 2 ~ ‘I*, 
and this occurs for the maximum admissible value of i, namely f = & 2’/*/2, and 
3”*/2 in lD, 2D, and 3D, respectively. In these limiting cases the components of 
k are all equal to their maximum values N/2, and at every grid point sin(k . x) is 
zero. Thus the interpolating function v(x; k) is identically zero and Er is simply 
given by the mean-square value of sin(k . x). Further, for a fixed value of k, the 
computed RMSE is least when the wavenumber components ki are all equal and 
increases when they are unequal. This feature contributes to the undulations in Er, 
that may be noted in Fig. 2, as R becomes large. 

Figure 3 shows the RMSE against l/k for 1D and 2D Hermite interpolation, 
with the undulations smoothed out. As before, for & less than 0.2 both these curves 
become straight lines in the log-log plot, indicating asymptotic convergence. 
Though the slope of both lines are the same, they are well separated, unlike the case 
of linear interpolation (LNI). Similar behavior is expected for three dimensions. 
The RMSE for 2D Hermite interpolation may be used as a guide to the accuracy 
of the PHI scheme, which combines 2D Hermite interpolation and direct summa- 

lo-': 

IO-': 
4 

10-i - l-Dimension 

. . . . . . . . . Z-Dimension 

3-Dimension 

FIG. 2. Root mean square error against nondimensional wavenumber vector for linear interpolation 
schemes. 
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FIG. 3. Root mean square error against nondimensional wavenumber vector for Hermite interpola- 
tion schemes. 

tion. Let x be the direction of direct summation in PHI, then since direct summa- 
tion does not introduce any error for given values of k2 and k3 the RMSE does not 
increase as k, increases. For a constant value of k the error will be a maximum 
when k, = 0 and will reach its minimum when k, = k, = 0. The maximum error is 
the same as that for 2D Hermite interpolation and the minimum error is equal to 
zero. Hence the error remains the same over a range of k and is determined only 

FIG. 4. Root mean square error against nondimensional wavenumber vector for the four different 
schemes. -: 3D Linear interpolation; ---: 1D Lagrangian; ...: 2D Hermite interpolation; 
-----: maximum error for TS13; -.-.----: minimum error for TS13. 
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by k, and k3. Overall, for any value of L, the error in PHI will be less than the 
corresponding RMSE for 2D Hermite interpolation. 

Figure 4 shows the RMSE for four different schemes: 3D linear interpolation, 2D 
Hermite interpolation, sixth-order Lagrangian interpolation, and the 3-dimensional 
method TS13 due to Yeung and Pope [ 111. As discussed above, the RMSE for 
PHI will be less than that for 2D Hermite interpolation, so this figure shows a 
proper comparison for the accuracy of these methods. The evaluation of the RMSE 
for the LGI method proved too complicated, even with the aid of MACSYMA, in 
three dimensions and so only the RMSE for one dimension (1 D) is shown. Based 
on the results for linear interpolation shown in Fig. 2 there should be little 
difference between 1D and 3D. 

For small values of ,i?, the error for all four methods decreases with decreasing 
wavenumber i and the RMSE matches the expected asymptotic convergence 
relations, 

3 D-Linear (LNI) : Er cc R2, (3.6a) 

2D-Hermite: Er cc i4, 

1 D-Lagrangian(LG1): Er cc i?, 

3D-TS 13: Er cc f’. 

(3.6b) 

(3.6~) 

(3.6d) 

Linear interpolation is the least accurate of the methods. In three dimensions the 
LGI method will have its maximum error at R = 3”‘/2, the same as for LNI, and 
approach 3’/*/2, the error estimate for LGI in 1D for small values of f. For all 
values of & the LGI method will be more accurate than LNI in 3D. For the TS13 
method two error estimates are given since this method treats the y direction 
differently from the x or z direction. The upper curve represents the maximum error 
that occurs when k, = 0 and the lower curve represents the minimum error that 
occurs when k, = k3 = 0. For any other combination of k,, k,, and k, the error lies 
within this band. It is also interesting to note that for large values of k the error 
involved in 2D Hermite interpolation is substantially less than those of the other 
three methods. This is because, Hermite interpolation makes use of the velocity 
derivatives in addition to velocity values. For large values of ft 2D Hermite inter- 
polation is more accurate than the LGI method but as l decreases the LGI method 
becomes more accurate. In this range though the errors are quite small in absolute 
terms, and for a flow simulation the truncation errors of the simulation may be 
more significant. 

3.2. Spectrum of Modes 

The second factor governing the accuracy of an interpolation scheme is the 
relative distribution of energy .between the individual modes. Some estimate of this 
effect may be obtained by weighting the error estimate for the individual modes, 
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found above, by a typical energy spectrum E(k) for homogeneous isotropic 
turbulence. The normalized error, in a loose average sense, is defined then as 

(3.7) 

It is assumed as before that the box length L is equal to 27~ and the simulation is 
for a cubic array of N3 grid points. The wavevector components ki are given by 
(1.2) and take integer values between -N/2 and N/2, the value of k is related to 
k by (3.5). There is a limit to the smallest turbulence scale that can be accurately 
resolved by the simulation and this sets an upper limit, k,,, to the magnitude of 
the largest resolvable wavenumber. Following Patterson and Orszag [7], k,,, is 
taken to be 

k max = (2 x 2”‘/3) x N/2. 

The particular choice of energy spectrum is taken to be that proposed by Pao [6] 

E(k) = ke513 exp[ - 1.5a(kq)4’3], k-c k-mx~ 

= 0, k~kn,,, 
(3.8) 

where c1= 2.45 and YI is the Kolmogorov microscale. 
Figure 5 shows how the relative error defined by (3.7) decreases as the number 

of grid points in each direction, and hence the grid resolution, increases. The value 
of 9 is set to be r) = A. The figure gives a comparison between the accuracy of the 
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FIG. 5. Effect of increasing the number of grid points on the normalized error for a fixed turbulence 
energy spectrum (q = A). 
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N = 32 

FIG. 6. Effect of spatial resolution on the normalized error for a (32)3 simulation. 

different schemes; and over the range shown the 2D Hermite interpolation is clearly 
the most accurate. Since the maximum error involved in PHI is equal to the error 
involved in 2D Hermite interpolation, the PHI scheme will be even more accurate. 
Similar comparisons can be made for other values of q. 

Generally in turbulence simulations, as N is increased the turbulence Reynolds 
number is also increased and the Kolmogorov microscale decreases. The spatial 
resolution of the grid should then be compared with the value of q for any fixed 
number of grid points. Following Yeung and Pope [ll, Fig. 33 we show in Fig. 6 
the normalized error for different values of k maxq. The value of k,,,~ should be 
about one or larger for adequate resolution of the small-scale turbulence dynamics. 
The range of values of k,,,~ shown in Fig. 6 lie between 0.2 and 3.0, though values 
appreciably less than 1.0 would not be encountered in a properly resolved simula- 
tion. Again the value of this diagram is as a comparison of the various schemes. 
Over the range shown PHI is the most accurate but the rate of convergence of the 
LGI scheme is faster as the value of q increases and, by implication, the Reynolds 
number is decreased. 

4. NUMERICAL EXPERIMENTS 

The preceding error estimates give a measure of the accuracy of these different 
interpolation schemes for evaluating the Lagrangian fluid velocity. From the point 
of view of applications though, it is important to see how well they perform in 
typical numerical experiments. For this purpose we have carried out direct 
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numerical simulations of decaying, homogeneous, isotropic turbulence at two 
different Reynolds numbers. Particles moving as Lagrangian fluid tracers, according 
to (1.3), were introduced into the flow field and various velocity statistics were 
obtained. Specifically, error estimates were determined for the absolute velocity of 
a single particle, the relative velocity of two particles, and a comparison made 
between the various schemes in determining the dispersion statistics for single 
particle turbulent diffusion. 

The flow fields for decaying, homogeneous turbulence were generated by numeri- 
cally solving the Navier-Stokes equations for incompressible flow with a pseudo- 
spectral method similar to that described by Riley and Patterson [9]. A mesh of 
32 x 32 x 32 grid points was used to represent the flow, in a box of side 27r and with 
periodic boundary conditions imposed on the flow field. The flow u(x, t) is specified 
in spectral form by a Fourier series (l.l), and the flow evolves according to the 
Navier-Stokes equations written in rotational form 

au/ar = u x 0 - V(p/p + $u’) + v v*u, (4.1) 

V.u=Q, (4.2) 

where o is the fluid vorticity, p the pressure, p the density, and v the kinematic 
viscosity. The flow was computed using a leapfrog scheme for the nonlinear terms 
and a Crank-Nicholson scheme for the viscous terms. The flow was specified 
initially as a pseudo-random, incompressible flow field with Gaussian statistics and 
zero mean flow. Statistically the initial flow was homogeneous and isotropic, and 
the energy spectrum was chosen [4] to be 

E(k) = 16(2/rc)“* U:k4k;’ exp( -2k’/ki), 

where Vi is the initial mean square value of the velocity fluctuation ui. 

(4.3) 

In the experiments reported here the turbulent flow was computed from the 
initial flow for a fixed number of time steps till the velocity statistics, velocity 
derivative skewness, and other statistical quantities had reached a level charac- 
teristic of a developed turbulent flow. At this point the particles were introduced 
and this was then taken to be the reference time, t = 0. Two sets of initial conditions 
were specified. For both sets of simulations the box side L was 27r cm, k, was 
2.378 cm-‘, and the viscosity v was 0.6 cm*s-1 in dimensional units. For the first 
experiment Ui = 240 cm2s-*, and the flow evolved for 75 time steps before the 
particles were introduced. For the second experiment Ui = 1200 cm*s-* and the 
flow evolved 192 time steps before the particles were introduced. Figures 7 and 8 
show the evolution in time of the Reynolds number, Re, based on the Taylor 
microscale, I, and the evolution of A for the two experiments. The quantities 1 and 
Re, are defined by 

w/J*= (@4l~xl)*>~ (4.4) 

Re, = (UT) ‘I2 n/v. (4.5) 
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0.00 0.04 0.08 ( 

Time (t) 
12 

FIG. 7. Evolution of the microscale Reynolds number Re,, see (4.5), in a 323 grid point simulation 
of decaying, homogeneous, isotropic turbulence: 0, first simulation with Re,= 17 at t =O; x, second 
simulation with Re, = 26.5 at t = 0. 

0.00 0.04 0.08 0.12 

Time (t) 

FIG. 8. Evolution of the Taylor microscale I, see (4.4), in a 32’ grid point simulation of decaying, 
homogeneous, isotropic turbulence: 0, first simulation with Re, = 17 at r = 0; x , second simulation 
with Rel = 26.5 at t = 0. 
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For both experiments the Taylor microscale grows in time, while the Reynolds 
number decreases from a value of Re, = 17 at the reference time t = 0 for the first 
experiment, and from Re,=26.5 for the second experiment. In both experiments 
k,,,q increases with time; for the lower Reynolds number case, k,,,q increases 
from a value of 1.38, at t =O, to its final value of 1.64 at t =O.l; for the higher 
Reynolds number case, k,,, q increases from 0.85 to 1.37. 

4.1. Absolute and Relative Velocity Measurements 

In the first test, the different interpolation schemes are used to evaluate the 
absolute velocity of a single particle and the relative velocity of two particles for a 
large number of particles, using the two turbulent flows described above. A 
thousand fluid particles in 125 groups of 8 each are introduced into the turbulent 
flow at t = 0. For each group the position of the first particle .Z = 0, is chosen at 
random within the box. The position of the Jth particle .Z= 1,2, . . . . 7, within the 
same group is chosen at random to lie on the surface of a sphere, centered on the 
first particle, with radius rJ. The values of rJ for these simulations are 

rl = 0.01, (4.6a) 

r2 = 0.05, (4.6b) 

r3 = 0.1, (4.6~) 

r4 = 0.2, (4.6d) 

r5 = 0.5, (4.6e) 

r6 = 1.0, (4.6f) 

r, = 2.0. (4.W 

The individual particle positions are labelled X(Z, .Z; t) for the position of the 
Lagrangian fluid element at time t, where Z= 1,2, . . . . 125 indicates the group and 
J= 0, 1, . ..) 7 indicates the particle number within the group. 

The local fluid velocity u(x = X(Z, .Z; t), t), designated by u(Z, J), is evaluated by 
direct summation (DS). The different interpolation schemes LGI, PHI, LNI, and 
SFM are used in turn to obtain approximations v(x = X(Z, J; t), t), designated by 
v(Z, J), to the local fluid velocity. The average fractional error in evaluating the 
absolute velocity of a single particle is then defined for each method as 

Au= E:‘,‘, c:4l IV, 4-a J)12y2 
{C21 CL, IW, J)12Y2 ’ (4.7) 

where the average is formed by summing over all the particles. 
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Similarly the average fractional error in evaluating the relative velocity of two 
particles, for each separation distance rJ, is defined as 

du= {Ix:‘=‘, I(W,J)-vu, O))-(UK J)-44 W12Y2 
(c:‘=‘, lu(Z, J) - u(Z, o)12p2 ’ (4.8) 

where J= 1, 2, 3, . . . . 7. 
Tables I and II summarize the results for the fractional error AU, where the 

particles are introduced at t = 0 into the two different turbulent flows. The data is 
also plotted in Figs. 9 and 10 on a logarithmic scale. Table I summarizes the results 
for the first experiment at Re, = 17. For all the interpolation schemes the error in 
evaluating the absolute particle velocity at this lower Reynolds number is quite 
small, 4% or less. The PHI scheme is the most accurate, the error being two orders 
of magnitude less than for LNI, while the shape function method (SFM) is the next 
most accurate. The errors, shown in Fig. 9, in evaluating the relative velocities are 
significant when the particle separation rJ is small, but for large values of the par- 
ticle separation the errors in the relative velocities decrease and become comparable 
to the error involved in evaluating the absolute particle velocity. When the particle 
separation is smaller than the grid size, which in our case is equal to 2x/32 x 0.2, 
the particle velocities are strongly correlated and the contribution to the relative 
velocity from high wavenumber components is high. Whereas, for a larger particle 

10” 
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FIG. 9. Average fractional error in evaluating the relative velocity of two particles against particle 
separation distance for the Iirst simulation with initial Reynolds number Re, = 17. The lines at the right 
of the figure show the fractional error in evaluating the absolute velocity of a single particle. 
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FIG. 10. As in Fig. 9, for second simulation with initial Reynolds number Re, = 26.5. 

separation particle velocities are less correlated and the low wavenumber com- 
ponents dominate the relative velocity. For all four interpolation schemes that 
appear in Table I it can be clearly seen that for particle separations less than 0.2, 
the errors in the relative velocities are five to ten times larger than the corre- 
sponding single particle errors. With increasing particle separations the errors in the 
relative velocities decrease and for particle separations comparable to the box size 
the errors are approximately equal to the corresponding single particle errors. For 
small separations the linear interpolation scheme (LNI) is seriously in error, 
typically 20%, while the other schemes maintain reasonable accuracy. Again, PHI 
is the most accurate, with errors of ioh or less, and SFM the next most accurate. 

Table II summarizes the results for the second experiment at Re, = 26.5. The high 
wavenumber content of the energy spectrum in this simulation is much stronger, 
and the errors in evaluating fluid velocities are more significant. The errors for the 
absolute velocity range from 8 % for LNI to 0.6 % for the PHI scheme. Again, the 
PHI scheme is the most accurate. The error in the relative velocity shown in Fig. 10 
for this higher Reynolds number case behaves similarly to the lower Reynolds 
number case shown above. As before the fractional errors in the relative velocities 
for small particle separations are much higher than the corresponding error in 
evaluating the absolute particle velocity and range from 41% for LNI to 3 % for 
the PHI scheme. The sixth-order Lagrange interpolation scheme (LGI) for both 
experiments is not as accurate as PHI or SFM, but for the absolute velocity of a 
single particle gives acceptable results with errors of i and 4%, respectively. 
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4.2. Single Particle Dispersion 

In this second set of tests the different interpolation schemes are used to estimate 
the turbulent dispersion of individual Lagrangian tracers, for the two different tur- 
bulent flow simulations described earlier. At time t = 0, 250 particles are introduced 
into the flow at random locations. The trajectory X(t) of a fluid particle is deter- 
mined by (l.l), 

dx/dt = u(x = X(t), t), (4.9) 

subject to the initial condition 

X(t = 0) = x,. (4.10) 

Here we use X(t) to denote the particle trajectory computed by directly summing 
(DS) the Fourier series (1.1) to evaluate u(X(t), t). For the different interpolation 
schemes we use Y(t) to denote the trajectory computed from the approximation 
v(x, t) to the flow field u, thus 

dY/dt = v(x = Y(t), t), (4.11) 

subject to the same initial condition 

Y(t = 0) = x,. (4.12) 

Equations (4.9) and (4.11) are solved numerically with a fourth-order, Adams- 

0.00 0.04 0.08 0.12 

Time 
FIG. 11. Growth of average error in particle position against time for different interpolation 

schemes: 0, LNI; x, LGI; 0, PHI. First simulation with initial Reynolds number Re,= 17. The 
broken line shows the actual root mean-square particle dispersion for the same conditions. 
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Moulton, predictor-corrector method and a fourth-order Runge-Kutta method is 
used to initialize the scheme. These fourth-order schemes ensure negligible time 
stepping error compared to the error involved in the evaluation of u(X(t), t). 

The first test made is to compare the approximate trajectory Y(t) with the true 
trajectory X(t), and to see how rapidly the two diverge. The separation between the 
two trajectories is (Y’“‘(t) -X’“‘(t)) at any instant, for the mth particle, where 
m = 1, 2, . . . . M. The total number of particles, M is here equal to 250. The separa- 
tion distance is averaged over all the particles and we define 

AX(t)= a f [Y’“‘(t)-X’“‘(t)12 
{ I 

l/2 
. 

M=l 

(4.13) 

Figures 11 and 12 show the growth of this separation distance Ax with time for the 
different interpolation schemes and for the two different Reynolds numbers. For 
comparison the corresponding root mean-square (rms) actual particle dis- 
placements for single particle dispersion are also plotted as broken lines in these 
figures. The divergence of the approximated trajectory from the true trajectory 
grows most rapidly for the linear interpolation scheme (LNI), and least rapidly for 
the PHI scheme. In Fig. 11 at time equal to 0.1, the root mean-square error in 
particle displacement is 44% of the actual rms displacement for LNI and the 
corresponding percentage errors for LGI and PHI are 17% and 8%. For the 
higher Reynolds number case the corresponding percentage errors in particle 
displacement are higher and are equal to 65, 43, and 16% respectively for LNI, 
LGI, and PHI. The PHI method is reasonably accurate for the full duration of the 
simulation. 

0.04 0.08 0.12 

Time 
FIG. 12. As in Fig. 11, for second simulation with initial Reynolds number Re, = 26.5. 
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The second test is to compare the Lagrangian statistics associated with turbulent 
dispersion [lo]. First, the averaged Lagrangian velocity correlation is evaluated 

&(f) = &j c [v(x = Y@‘(O), 0). v(x = Y’“‘(t), t)], (4.14) 
??I=1 

where the average is over all the particles and over the three coordinate directions. 
The correlation RL(t) is determined for direct summation (DS) and the three 
approximate methods LGI, PHI, and LNI. Second, the effective eddy diffusivity 
o(t) is determined as 

o(t)=& f [(Y’“‘(t)-Y(m)(0)).v(x=Y(~yt),t)], (4.15) 
m=l 

where the average is over all the particles and the three coordinate directions. 
Third, the mean square particle dispersion is determined by 

s(q2=& 5 IY’“‘(t)-Y’“‘(O)(2, 
??I=1 

(4.16) 

again averaging over all particles and coordinate orientations. These statistics of 
turbulent dispersion are related to each other, since 

d/dt [S(t)‘] = 2D(t). (4.17) 

The results for these different Lagrangian statistics are shown in Fig. 13 for the 
first turbulence simulation at the lower Reynolds number, and in Fig. 14 for the 
second simulation at the higher Reynolds number. The results show that there is 
not a large difference between the results for the different methods, with the possible 
exception of the linear interpolation scheme, which shows the greatest difference at 
small time separations when the high wavenumber content of the spectrum is 
strongest. This is slightly more pronounced for the higher Reynolds number simula- 
tion. These results indicate that the single-particle, statistical averages are not 
sensitive to the approximation scheme used. This is a consistent with the results of 
Section 4.1, where the absolute velocity of a single particle was approximated 
reasonably well by most methods. Also the particle dispersion is determined by the 
Lagrangian velocity correlation RL(f), which at large time separations is dominated 
by the contribution of large scale, well correlated motions. This further reduces the 
impact of the high wavenumber content of the energy spectrum. 

4.3. Computational Speed 

So far the emphasis in comparing the different approximation methods has been 
on accuracy. In any practical situation the choice of a numerical interpolation 
scheme will be made on the basis of both accuracy and computational speed. To 
check the computational speed of the various methods a series of tests were made 
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FIG. 13. (a) Lagrangian velocity correlation against time for the first turbulence simulation at the 
lower initial Reynolds number. x : DS; 0 : LGI; 0 : PHI; *: LNI. (b) Effective eddy diffusivity against 
time for the first turbulence simulation at the lower initial Reynolds number. x : DS; 0 : LGI; Cl : PHI; 
*: LNI. (c) Mean square particle dispersion against time for the tirst turbulence simulation at the lower 
initial Reynolds number. x : DS; 0 : LGI; 0 : PHI; *: LNI. 

to find the time taken, including any initial overhead for additional FFTs, to 
evaluate the fluid velocities for M particles, where A4 was taken to be 1, 10, 100, 
and 1000. The results of these tests are summarized in Table III. In a typical run, 
the computation for the time evolution of a (32)3 homogeneous turbulent flow field 
requires 0.26 s of the computer time for each time step. From Table III, it is clear 
that for large values of A4 the computational time required for evaluating the fluid 
velocities can exceed the time required for the computation of the flow field. 
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FIG. 14. (a) The same as Fig. 13a but for the second turbulence simulation at the higher initial 
Reynolds number. (b) The same as Fig. 13b but for the second turbulence simulation at the higher initial 
Reynolds number. (c) The same as Fig. 13c but for the second turbulence simulation at the higher initial 
Reynolds number. 

Direct summation (DS) involves no overhead in computation, and where 
vectorization is over a wavenumber component (DSB), giving vectors of length N, 
the computation time increases linearly with the numbers of particles. Vectorization 
over the number of particles (DSA), giving vectors of length M, is more effective 
if M is larger than N. Methods such as PHI and SFM involve a certain amount of 
overhead to perform the additional FFTs, while linear interpolation and the LGI 
scheme require no fixed overhead. The PHI scheme in particular involves a sub- 
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TABLE III 

The Time Taken in Seconds to Compute the Particle Velocities by the Various Interpolation Schemes 
for a Grid of 32-’ Mesh Points 

M=l 
M=lO 
M= 100 
M=lOOO 

DSB DSA 

0.022 0.412 
0.220 0.443 
2.200 0.651 
22.30 2.650 

LNI LGI PHI SFM 

0.002 0.011 0.188 0.361 
0.004 0.009 0.197 0.386 
0.005 0.034 0.204 0.453 
0.010 0.130 0.212 0.677 

Note. The total number of particles, M varies between 1 and 1000 

stantial overhead in initial computations, but requires little additional time as the 
number of particles is increased. This scheme is quite effective for larger number of 
particles. 

5. CONCLUSIONS 

Overall accuracy and computational speed are the two most important factors in 
choosing a numerical interpolation scheme for evaluation of fluid velocities. Direct 
summation offers high accuracy but at low speeds while linear interpolation gives 
low accuracy at high speeds. The alternative schemes considered here, LGI, PHI, 
SHM, and the scheme TS13 due to Yeung and Pope [11] lie between these two 
extremes in both accuracy and speed. From the results of Section 4.2 on the 
Lagrangian statistics of turbulent diffusion it is clear that the results are very similar 
for ali the interpolation schemes, except perhaps for LNI. This is partly due to the 
dominant contribution of large scale, low wavenumber motions to the dispersion 
process. So if one is only interested in one-particle Lagrangian statistics it is 
sufficient to settle for a less accurate but computationally faster scheme such 
as LGI. On the other hand, for experiments such as the simulation of particle 
coagulation, where close interaction of particles play a crucial role, the choice of the 
interpolation scheme is determined more by the need for accuracy. 

For a turbulence simulation with only (32)3 mesh points, the maximum Reynolds 
number Re, for which the flow is adequately resolved is generally accepted to be 
about 24 [3], At this limiting value the energy in the high wavenumber com- 
ponents increases and so do the errors in the interpolation schemes. The results of 
Table II thus indicate “worst case” results. As noted in Section 4.1 the LGI scheme 
gives acceptable results if the Reynolds number is not too high, but at higher 
Reynolds numbers the slower, but more accurate PHI scheme is required. An 
alternative approach that may be adopted is to perform the interpolation on a liner 
mesh, say (48)3 as opposed to (32)3, even if the rest of the turbulence simulation 
is performed on the coarser mesh. The Fourier coefficients for the velocity field may 
be expanded from (32)’ to (48)3 by setting the additional Fourier coefficients to 
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zero and then using FFTs to give the velocities on the finer mesh of grid points. As 
a comparison for example, we may see from Fig. 5 that the normalized error for the 
LGI scheme at N= 49 is the same as the normalized error for PHI when N= 32. 
The final choice between these approaches will depend on the additional computa- 
tional time required. 

The choice of an interpolation scheme depends on what is being computed in the 
rest of the simulation. If the simulation includes a dealiassing scheme then an inter- 
polation scheme such as TS13 will not involve any additional overhead, since the 
velocity values on the shifted grid will already be available. Similarly if the simula- 
tion requires the evaluation of velocity derivatives then schemes such as PHI or 
SHM involve little or no additional overhead in computation and become relatively 
fast. Factors such as storage requirements, available memory, and paging 
input/output will also affect the choice of scheme. 

The preceding discussions have focused on methods of evaluating fluid velocities 
in homogeneous turbulence, where periodic boundary conditions are applied. This 
allows the flow field to be extended to points beyond the computational domain. 
In particular, for the higher order Lagrangian interpolation schemes such as LGI 
this allows fluid velocities to be evaluated at points close to the boundary while still 
keeping the interpolation grid centered on the particle position. In other problems 
where spectral simultations are used with no-slip or inhomogeneous boundary 
conditions this is not appropriate, and Lagrangian interpolation schemes are less 
accurate if the interpolation grid is not centered. The other schemes such as PHI, 
SFM, and direct summation (DS) are not restricted in this way. Hermite interpola- 
tion for example requires only the data locally at the nearest neighboring grid 
points. Although the topic is not pursued in this paper these other schemes should 
perform equally well in bounded regions or for inhomogeneous turbulence. 

APPENDIX: BASIS FUNCTIONS 

Lagrangian Interpolation 

Following the notation used in Section 2, Lagrangian basis function can be 
written as 

L&c) = 0; X<Xi-3 

=& c45-5t3+t51, J= 
Cxmxi-3). 

h 7 Xi-3Gx<Xi-* 

=& [-65-52-t753+(4-55], 
t=(X-xi-Z). 

h ’ 
x;-,<XGXi-1 
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=h [125+852-753-2~4+255], 5=(x-xi-i). 
h ’ 

Xi-1 <XGXi 

=A [12-4&5<2+5<3+3<4-t5], 5 _ Cxpxi). 

h ’ 
Xi6x6xi+, 

=& [-6~+16[2-53-4<4+<5], r=(x-xi+I). 
h ’ 

= & [6( - 5t2 - 5t3 + 5C4 - t5], 

= 0; 

cc (x-xi+2). 

h ’ 

where h is the grid spacing and because of periodicity 

xp = x 
P+N 

ifp<O 

=xp-N ifp>N. 

“i+*GxGxi+3 

xi+3 6x9 (A.1) 

64.2) 

Hermite Interpolation 

The basis functions for Hermite interpolation can be written as 

Hi(x) = 0; 

= 12(3 - 28, 

X<Xi-, 

<c(x-xi-l). Xi-,<X<Xi 
h ’ 

=(1-5)*(1+x), ~-(x-xi). 

h ’ 

and 

= 0; 

Gi( x) = 0; 

= ht2(t - 11, 5=(x-xi-i). 
h ’ 

=h(l - 4)’ 5, 
~-(x-xi). 

h ’ 

Xi<xGxi+l 

xi+l<x 

X<“i-1 

Xi-1 GxGxi 

XiGxGxi+I 

X ICI <x9 (A.3) 

where h is the grid spacing and periodicity implies (A.2). 
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Linear Interpolation 

The basis function for Linear interpolation is 

Pi(X) = 0; X<Xi-1 

=(1-O, - h 7 
r-(x-xi-l). 

Xi-1 dX<Xi 

x-xi 
t= h ; 

( ) 
XiGx<Xi+l 

xi+I<xv 

where h, as in the previous cases, is the grid spacing and periodicity implies 
Eq. (A.2). 
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